
Splitting Merged Characters of Kannada Benchmark
Dataset using Simplified Paired-Valleys and L-Cut

H. R. Shiva Kumar, A. Madhavaraj and A. G. Ramakrishnan
Dept. of Electrical Engineering, Indian Institute of Science, Bangalore, India

shivahr@gmail.com, madhavaraja@iisc.ac.in, agr@iisc.ac.in

Abstract—We reduce the computational complexity
of the paired-valley algorithm for splitting merged
characters, from Θ(N2) down to Θ(N), where N is
the number of symbols merged. We also propose an
effective way (L-cut algorithm) to separate the merged
half-consonants (known in Kannada as ottus) from the
base symbols. We have created a benchmark dataset
of 4033 sub-word images in Kannada, each comprising
two or more merged characters. We test the recognition
accuracy of Tesseract OCR on the created benchmark
dataset, before and after applying our technique. The
accuracy of Tesseract v3 OCR on the created dataset
of 61.6% increases by 20% to a value of 81.7% after the
splitting of the characters by our method. The algo-
rithm’s scalability to other scripts has been explored
by limited experiments on Telugu and Tamil.

Index Terms—Merged characters, printed text,
paired valleys, Kannada, ottu, Tamil, Telugu, OCR,
VPP, Tesseract, old books, computational complexity.

I. Introduction
Merged characters that occur in old printed books are

unseen patterns for the classifier and reduce the perfor-
mance of optical character recognition (OCR) systems.
They are akin to the occurrence of the out of vocabulary
words in automated speech recognition systems. A number
of techniques have been proposed to segment and recognize
the merged characters, and can be basically classified as
recognition-free and integrated segmentation-recognition
(ISR) approaches. In the former approach, a set of rules is
used to segment the characters before recognition, whereas
in the latter approach, the recognition scores for the
segmented components returned by the classifier are used
to choose one out of many candidate segmentation paths.

A. Literature Survey
Zhu et al. [1] and Liu et al. [2] used ISR method to

separate merged handwritten characters in Japanese and
Chinese, respectively. Yang et al. [3] used the Vertical
projection profile (VPP) of merged Chinese characters
to obtain candidate cut locations (CCL) and chose the
optimal ones using the recognition score. Messelodi and
Modena [4] also split merged Roman characters using
VPP. Davessar et al. [5] first vertically cut the merged
Gurmukhi characters in the middle and searched for the
CL within a window and confirmed it using recognition
feedback and the aspect ratios of the separated units.

Bayer et al. [6] employed a statistical cut classifier and a
search procedure to identify the merge locations in printed
text, wherein, the computational complexity increases dis-
proportionately with the number of merged characters in
the image. Wang and Jean [7] deployed a neural network
and shortest path to segment merged characters. Zhang,
Tian and Li [8] use contour analysis to extract the concave
points in the merged images of mathematical symbols and
use them to postulate cut locations (CL) and employ a
recognizer to verify them. Employing the histogram of the
merged image to form binary-tree indexed demarcation
using forward-backward algorithm, Tang et. al. [9] split
the merged symbols.

Most of the recognition-free segmentation approaches
proposed in the literature have dealt with merges in
handwritten characters only. Congedo et al. [10] put forth
the drop fall algorithm to split merged numeric strings
in handwritten documents. Chang et al. [11] obtained
the convex hull of the merged character and segmented
merges in printed text using the features obtained from the
concave residual and the shortest path algorithm. Lacerda
and Mello [12] chose the optimal cut locations for splitting
digit string merges in handwriting, employing the image
skeleton and self-organizing maps.

Madhavaraj et. al. [13] reported the maiden effort in
splitting of merged Kannada characters. They proposed
a recognition based method for segmenting merged char-
acters in printed Kannada documents by pairing top and
bottom valleys of the merged-character image to locate the
candidate cut locations (CCLs). Further, aspect ratios of
the segmented parts, their recognition labels and scores
returned by the classifier are used to choose the best
segmentation path (SP). We refer to their algorithm as
paired-valleys based ISR (PV-ISR).

B. Computational Complexity of PV-ISR method
A major computational complexity of the PV-ISR

method is the need for exhaustive search for the optimal
segmentation path from all possible paths that can be
hypothesized from the candidate cut locations. For exam-
ple, for the merged image shown in Fig. 1, the PV-ISR
algorithm detects 7 CCLs, namely P1 to P7. The possible
segmentation units (SU) are {B-P1, B-P2, ..., B-E, P1-P2,
P1-P3, ..., P1-E, ..., P7-E} giving a total of 35 possible
SUs, excluding input image B-E . Thus, the number of



Fig. 1: Example of a Kannada sub-word with merged
characters showing the candidate cut locations (CCLs)
obtained from the PV-ISR algorithm. Top valley points
are shown in green color and bottom ones, in red. Yellow
lines show the CCLs, where there are matching pairs of
top and bottom valleys in close proximity.

distinct SUs is (N +1)(N +2)/2−1 = N(N +3)/2, where
N is the number of CCLs, and not (N2+ 3)/2 as wrongly
mentioned by Madhavaraj et al. in [13]. For each of those
SUs, the PV-ISR algorithm extracts the required features
and feeds it to a character recognizer. If the aspect ratio
(AR) of any SU lies beyond the expected AR range of the
recognized character class, then the recognition score of
that SU is changed to a minimum value. Next, for finding
the optimal SP, it considers the (27 − 1) = 127 possible
SPs, computes the average likelihood of each of them,
and finally selects the one with the maximum likelihood
score. Further, the PV-ISR algorithm does not deal with
merges of the base characters with the ottus, which types
of merges also occur frequently in old Kannada texts.

C. Contributions of the paper
We simplify the paired-valleys algorithm for splitting of

character merges so that it becomes a recognition-free ap-
proach and hence significantly reduces its computational
complexity from Θ(N2) down to Θ(N). The simplified
algorithm can be applied as a pre-processing step before
running any OCR, for the splitting of merged characters,
as is demonstrated for the Tesseract OCR, in Sec. IV.

We also present a maiden algorithm for the detection
and splitting (L-cut algorithm) of the merger of Kannada
ottu symbols with the base characters.

For rigorously evaluating the performance of various
algorithms, we have created a benchmarking dataset of
4033 Kannada sub-word images, each containing two or
more merged symbols, along with their ground truth text
in Unicode. Section IV compares the results of VPP-ISR,
PV-ISR and our algorithm on this benchmarking dataset.

II. Simplified Paired Valleys and L-Cut
(SPV-LC) Algorithm

A. Simplified Paired Valleys based Splitting
Merges in Kannada printed documents generally hap-

pen between the middle portions of successive characters,
where they usually have outwardly rounded shape. This
results in the formation of valleys just above and below the
merged portion. Paired valleys based algorithms for split-
ting merged characters, such as PV-ISR [13], rely upon

(a) (b)

Fig. 2: Filtering out the valley points within a character:
(a) Filter out bottom valleys (red color) in the ‘ω’ shaped
portion of the character by looking for matching valleys
(blue color) in the negative image. (b) Filter out top
valleys (green color) in the ⌣ shaped portions of the
characters by looking for matching valleys (blue color) in
the negative image at the bottom of the character.

Fig. 3: Cut locations for the Kannada sub-word obtained
by our SPV algorithm. Top valleys remaining after filtering
are shown in green color and bottom ones, in red. Yellow
lines show the cut locations, where there are matching
pairs of top and bottom valleys in close proximity.

the detection of such pairs of valley points for determining
the candidate cut locations (CCLs). Since valleys are also
formed within a character, the CCLs could cut a valid
character leading to oversegmentation as shown in Fig. 1
(at P1, P4 or P6). Here, each of the characters ಚ/ca/,
�ೆ/tte/ and �ಾ/yaa/ are cut into two pieces by the CCLs
P1, P4 & P6, respectively. To avoid oversegmentation,
recognition based approaches such as PV-ISR, consider all
the possible combinations of CCLs, recognize the resulting
segmentation units (SUs) and select the optimal sequence
of CCLs that gives the maximum recognition score.

We propose a simple but effective approach to avoid
oversegmentation by filtering out the valley points formed
within a character, thereby solving the problem at the
source. Characters in Kannada that have a ‘ω’ shaped por-
tion at the bottom such as ಚ/ca/, ಜ/ja/, ಟ/tta/, ಡ/dda/,
ದ/da/ and ಪ/pa/ have a bottom valley at the mid of
the character. Such bottom valleys among the background
pixels have a counterpart among the foreground pixels
immediately above them, as shown in Fig. 2a. Here, the
bottom valley among the background pixels is shown in
red color, and its counterpart among the foreground pixels,
in blue. Similar pattern exists in characters that have an
‘m’ shaped portion at the top such as ಣ/nna/ or ಇ/i/,
where the top valley among the foreground pixels has
a counterpart among the foreground pixels immediately
below it. Hence, to avoid oversegmentation, we filter out
valley points that have an immediate counterpart among
foreground pixels as shown in Fig. 2a.



Kannada characters that have ⌣ shaped portions at the
bottom such as ಚ/ca/, ಟ/tta/ and ಯ/ya/ have top valleys
at the mid of the ⌣ shape. Such top valleys among the
background pixels also have their counterpart among the
foreground pixels immediately below them at the bottom
of the character as shown in Fig. 2b. Here, the top valleys
among background pixels are shown in green color, and
their counterparts among the foreground pixels, in blue.
Again, we prevent oversegmentation by filtering out such
top valleys possessing immediate counterparts among the
foreground pixels at the bottom of the character, as shown
in Fig. 2b.

Figure 3 shows the valleys detected by our algorithm
on the same image shown in Fig. 1. Our algorithm has
filtered out the valley points formed due to ω and ⌣
shaped portions, thereby avoiding oversegmentation.

B. Detecting and Splitting Base-Ottu Merges

Another common merge in Kannada characters occurs
due to the touching of ottu symbols with the base symbols
as shown in Fig. 4. Ottu symbols are additional graphemes
used for representing consonant conjuncts and they appear
below the baseline of the line [14]. Ottus can get merged
with the previous consonant or the next one, leading to
right-side or left-side merges, as shown in the first and
second rows of Fig. 5. Some ottu symbols can appear right
below the base consonant as shown in the third row of
Fig. 5. We refer to this as the center merge.

An intuitive technique for splitting such merges is to
cut the base-ottu merger just below the baseline and
additionaly along the left or right side of the base symbol,
as shown in the second column of Fig. 5. We refer to this
technique as L-cut (LC) due to the resemblance of the cut
lines with the ‘L’ shape or its mirror image.

An important step before we can perform L-cut is the
detection of baseline, for which we can leverage horizontal
projection profile (HPP), as shown in Fig. 7. We smooth
the HPP with a Gaussian function to remove jitter, and
then take its first derivative. The location of the minimum
of HPP derivative in the lower half of the image is taken
as the position of the baseline. The third column of Fig. 5
shows the split of the base from the ottu symbols using
L-cut.

To handle the scenarios, where there are merges among
base characters as well as base-ottu merges, as shown in
the first column of Fig. 6, we first invoke SPV based
splitting on the image region above baseline. This splits
the merges among the base characters, as shown in the
second and third columns of Fig. 6. Then, on each con-
nected component in the SPV split image, we detect if
it corresponds to a base-ottu merger by looking at the
extent of region below the baseline. If a base-ottu merger
is detected, we invoke L-cut as shown in the fourth column
of Fig. 6. The fifth column shows the components, after
the splitting by the combined SPV-LC algorithm.

Fig. 4: Some example images, showing typical merges of
the base characters (in the middle zone) with the ottu
symbols (half consonants occurring below the baseline).

Fig. 5: Some examples of base-ottu merges, separated
(split) correctly using the proposed L-cut (LC) algorithm.

Fig. 6: Illustration of the SPV-LC algorithm, with 3
examples. First, the merged base characters are split by
invoking the SPV algorithm on the image region above
baseline. Then, the base-ottu merges are split using L-cut.

III. Kannada Dataset for Benchmarking

For rigorously evaluating the performance of the pro-
posed algorithm in splitting character merges, we have
created a benchmarking dataset of 4033 sub-word level
images, each containing two or more merged symbols.
Figure 8 illustrates some of the images from this bench-
marking dataset, showing merges across base components,
as well as across base and ottu symbols. The ground truth
text for each of the test images is provided in a separate
Unicode text file as shown in Table I.



Fig. 7: Detecting headline and baseline using Gaussian smoothed horizontal projection profile and its derivative.

Fig. 8: Samples from the Kannada merged symbol dataset
of 4033 sub-word images, each containing two or more
merged symbols. Test images contain merges between base
components, as well as between base and ottu components.

TABLE I: The ground truth text for each test image in
the Kannada merged symbol dataset has been provided in
a separate Unicode text file in the following format.

Image
Name

Unicode
Text

C0032.tif ಕಟ
C0037.tif ದವY
C0033.tif ಡಗ
C0228.tif ೀಜ
C0441.tif ೯¡ಾ
C0142.tif ಘ¾ಗ
C0117.tif ಷ®¡ಾ

Image
Name

Unicode
Text

C0223.tif £ೆ®ಂ
C0206.tif ¡ೈĚ
C0479.tif �ಾ°ನ
C0008.tif ಚರ¡ಾ
C0125.tif ೯ರĬ
C0199.tif ಥ�¡ಾ
C0053.tif �ೆ�್ Ě

(a) (b)

Fig. 9: (a) A sample Kannada sub-word, with merged
symbols. (b) A letter press printed Kannada word.

Performance of the proposed algorithm is evaluated
as the Levenshtein distance between the recognized and
the ground truth texts, across the entire benchmarking
dataset. Let N , S, I and D denote the number of Unicodes
in ground-truth, substitutions, insertions and deletions,
respectively. The Unicode level recognition accuracy is
determined as:

Accuracy = (N − S − I −D)/N (1)

This approach counts errors from both segmentation
(merged symbols that are not split or those that are split
incorrectly) and recognition phases. A better approach to
measure errors only from the segmentation phase would
require pixel-level ground truth of symbols, where all
the pixels belonging to each symbol would be given an
unique number in ground truth. For example, for sub-
word ಗಸದ/gasada/ shown in Fig. 9a, all the pixels of
the symbols ಗ/ga/, ಸ/sa/ and ದ/da/ would have val-
ues of 1, 2 and 3, respectively. In addition, for Indic
scripts such as Kannada, such an approach should also
standardize the list of OCR symbols for that script.
For example, for the letter press printed Kannada word
ಪವ�ಾನ/pavamaana/, shown in Fig. 9b, the list of symbols
could be {ಪ/pa/, ವ/va/, �ಾ/maa/, ನ/na/} or {ಪ/pa/,
ವ/va/, ವ/va/, ಾ/vowel_sign_aa/, ನ/na/}. However, the
Unicode representation of that word is unique, consisting
of Unicodes {ಪ/pa/, ವ/va/, ಮ/ma/, ಾ/vowel_sign_aa/
and ನ/na/}. Currently, the created benchmarking dataset
has ground truth only at the Unicode/text level.

IV. Results and Discussion
We compare the performance of our SPV-LC algorithm

against those of the vertical projection profile (VPP-ISR)
and paired-valleys (PV-ISR) based ISR algorithms on
the new benchmarking dataset. The VPP-ISR and PV-
ISR algorithms, as described in [13], are run on all the
4,033 images in the new benchmarking dataset, and the
character recognition accuracy is computed as per eqn.
(1). Table II shows the recognition accuracies of VPP-ISR
and PV-ISR algorithms. For measuring the performance
of our SPV-LC algorithm, we recognize the segmented



TABLE II: Comparison of the Unicode recognition accu-
racies (in %) of various splitting algorithms - VPP-ISR,
PV-ISR and the proposed, on Kannada benchmarking
dataset of 4,033 sub-word images, each containing 2 or
more merged symbols. N, M: # of Unicodes in ground-
truth and OCR output, respectively. N = 15,626. S, I and
D: # of substitutions, insertions and deletions.

Algorithm Accuracy M S I D
VPP-ISR 63.4 14,419 3,514 496 1,703
PV-ISR 81.0 14,160 1,365 70 1,536
SPV-LC 87.2 15,142 1,017 251 735

characters using the same set of features and classifier as
in [13]; the combination of correlation and discrete wavelet
transform is used as features and, support vector machine
(SVM) with linear kernel is used as classifier. The last
row of Table II shows the recognition accuracy of our
SPV-LC algorithm. The VPP-ISR, PV-ISR and the SPV-
LC algorithms achieve character recognition accuracies of
63.4%, 81% and 87.2%, respectively. The results show that
the proposed algorithm achieves the best segmentation of
the merged characters. Our results cannot be compared
with those of [13], since (i) the database used there consists
of complete words, whereas in our case, we use fully
merged sub-words and (ii) the database used in [13] is not
public.

The impact of L-cut is measured by running the SPV
based splitting without using L-cut and measuring the
difference in character recognition accuracy on the bench-
marking dataset. Table III shows the recognition accu-
racy without using L-cut and the difference. The L-cut
improves character recognition accuracy by 4.9%.

Since Tesseract OCR supports Kannada, we ran Tesser-
act v3 and v4 on each of the 4,033 sub-word images in
the benchmarking dataset, and computed the character
recognition accuracy as per (1). Table IV shows that
Tesseract v3 achieves an accuracy of 61.6% on the test
dataset, showing that this version of Tesseract has some in-
built functionality for splitting character merges. However,
Tesseract v4, which is based on LSTM (and hence, is good
at capturing word-level language model), achieves a far
lower accuracy of 29.9% on the sub-word level dataset,
and hence we have skipped reporting of its results. Since
our algorithm is recognition-free, it can be leveraged as
an useful pre-processing step to split character merges
before running the Tesseract OCR. Table IV also shows
the performance of Tesseract v3 after preprocessing the
input images using our SPV-LC algorithm. Accuracy of
Tesseract v3 jumps from 61.6% to 81.7%, showing the
utility of the proposed algorithm as a pre-processing step.

Figures 10a, 10b and 11 show examples of successful
split of merged symbols using our SPV-LC technique.
Figures 12a and 12b show examples, where our algorithm
is either unable to split the merged symbols, or splits them

TABLE III: Impact of L-cut: recognition accuracy (in %)
without using L-cut and the improvement, due to L-cut.
All the notations are the same as in Table II. N = 15,626.

Algorithm Accuracy M S I D
SPV without LC 82.3 14,509 1,266 194 1,311
LC improvement +4.9 +633 -249 +57 -576

TABLE IV: Recognition accuracies (in %) of Tesseract
OCR (v3.04.00) on the benchmark dataset, before and
after splitting the input images using SPV-LC algorithm.
All the notations are the same as in Table II. N=15,626.

Accuracy M S I D
Tesseract v3 61.6 12,991 2,543 412 3,047
Tesseract v3
post SPV-LC 81.7 15,734 1,765 602 494

incorrectly. To see if the SPV-LC algorithm works for
other Indic scripts, we tested it on a few merged symbols of
Tamil and Telugu. Figures 13a and 13b show the outputs
for these samples, which prove its effectiveness.

(a) (b)

Fig. 10: Some samples of merged symbols successfully split
using SPV-LC technique. (a) Only base character merges.
(b) Both base-base and base-ottu merges.

V. Conclusion

The SPV algorithm is successful in splitting merged
symbols in a vast majority of cases, while also reducing the
computational complexity to Θ(N) from Θ(N2) in ISR ap-
proaches, where N is the number of symbols merged. The
maiden L-cut algorithm is largely successful in detecting
and splitting the merger of Kannada ottu symbols with the
base characters. On the Kannada benchmark dataset, the
Unicode recognition rate of Tesseract OCR increases from
61.6% to 81.7% after the splitting of the characters by our
method. The algorithm’s scalability to other scripts has
also been explored by limited experiments on Telugu and
Tamil. Thus, it holds promise as a useful module during
character segmentation in existing OCRs. The standard,
annotated database that has been created by us is now
available for researchers [17].



Fig. 11: Some more examples of merged symbols success-
fully split by the SPV-LC technique.

(a) (b)

Fig. 12: Inadequacy of SPV-LC algorithm. (a) Example
images, where SPV technique failed or split the base
symbols incorrectly. (b) Examples, where L-cut failed to
correctly segment base-ottu merges.

(a) (b)

Fig. 13: Testing of SPV-LC algorithm on other scripts.
(a) Sample cases of successful splitting of Tamil merged
symbols. (b) Splitting of merges between Telugu symbols.

References
[1] Zhu, B., Zhou, X. D., Liu, C. L., and Nagakawa, M., “A robust

model for on-line handwritten Japanese text recognition,” Int.
Jounal Document Analysis and Recog. 13(2), pp.121-–131, 2010.

[2] Liu, C. L., Jaeger, S. and Nakagawa, M., “Online recognition of
Chinese characters: the state-of-the-art,” IEEE Trans. Pattern
Analysis and Machine Intelligence, 24(2), pp.198-–213, 2004.

[3] Wuyi Yang, Shuwu Zhang, Haibo Zheng and Zhi Zeng, “A
recognition-based method for segmentation of Chinese character
in images and videos,” Proc. Int. Conf. Audio, Language and
Image Processing, ICALIP July 2008, pp.723-728.

[4] S. Messelodi and C.M. Modena, “Context driven text segmen-
tation and recognition”, Pattern Recognition Letters, Vol. 17(1),
pp. 47-56, Jan 1996.

[5] Davessar, N.M., Madan, S. and Hardeep Singh, “A hybrid ap-
proach to character segmentation of Gurmukhi script charac-
ters,” Proc. 32nd Applied Imagery Pattern Recognition Work-
shop, Oct 2003, pp.169–173.

[6] T. Bayer, U. Krebel and M. Hammelsbeck, “Segmenting merged
characters”, Proc. XI Int. Conf. Pattern Recognition, Vol. II.
Conf. B: Pattern Recognition Methodology and Systems, 1992.

[7] Jin Wang and Jack Jean, “Segmentation of merged characters
by neural networks and shortest path”, Pattern recognition,
Elsevier, Volume 27, Issue 5, May 1994, pp. 649-–658.

[8] Dong-Yu Zhang, Xue-dong Tian and Xin-fu Li, “An improved
method for segmentation of touching symbols in printed mathe-
matical expressions,” Proc. 2nd Int. Conf. Adv. Computer Con-
trol (ICACC) March 2010, vol.2, pp. 251-25.

[9] Tang Y, Li X, Zhang Y, Li M, Xu M, “Segmentation of touching
characters via tree-indexed demarcation using forward and back-
ward searches,” Adv. in Mech. Engineering. Oct 2017; 9(10).

[10] Congedo, G., Dimauro, G., Impedovo, S. and Pirlo, G., “Seg-
mentation of numeric strings,” Proc. Third Int. Conf. Document
Analysis and Recognition, Aug 1995, vol.2, pp.1038-1041.

[11] Chang, T.C. and Chen, S.Y, “Character segmentation using
convex-hull techniques”. Int. J. Pattern Recognition and Artificial
Intelligence, vol. 13, no. 6, pp. 833-858, 1999.

[12] Lacerda, E.B. and Mello, C. A B, “Segmentation of touching
handwritten digits using self-organizing maps,” Proc. 23rd IEEE
Int. Conf on Tools with Artificial Intelligence, 2011, pp.134-137.

[13] Madhavaraj A., A. G. Ramakrishnan, Shiva Kumar H. R. and
Nagaraj B., “Improved recognition of aged Kannada documents
by effective segmentation of merged characters,” Proc. Tenth Int.
Conf. Signal Processing and Communications, 2014.

[14] Rituraj Kunwar, Shashi Kiran and A. G. Ramakrishnan. “On-
line handwritten Kannada word recognizer with unrestricted
vocabulary,” Proc. Int. Conf. on Frontiers in Handwriting Recog-
nition (ICFHR), IEEE, 2010, pp. 611–616.

[15] Vijay Kumar B and A. G. Ramakrishnan. “Machine recognition
of printed Kannada text.” International Workshop on Document
Analysis Systems. Springer, Berlin, Heidelberg, 2002.

[16] Vijay Kumar B and A. G. Ramakrishnan. “Radial basis function
and subspace approach for printed Kannada text recognition.”
IEEE International Conference on Acoustics, Speech, and Signal
Processing 2004 May 17 (pp. V-321).

[17] MILE, IISc “Kannada benchmarking dataset of merged sym-
bols” https://github.com/MILE-IISc/MergedSymbolsKannada
2018.

[18] H. R. Shiva Kumar and A. G. Ramakrishnan, “Gamma En-
hanced Binarization - An adaptive nonlinear enhancement of de-
graded word images for improved recognition of split characters,”
Proc. NCC 2019.


